Package 'NMRphasing'

Title: Phase Error Correction and Baseline Correction for One Dimensional ('1D') 'NMR' Data
Description: There are three distinct approaches for phase error correction, they are: a single linear model with a choice of optimization functions, multiple linear models with optimization function choices and a shrinkage-based method. The methodology is based on our new algorithms and various references (Binczyk et al. (2015) <doi:10.1186/1475-925X-14-S2-S5>,Chen et al. (2002) <doi:10.1016/S1090-7807(02)00069-1>, de Brouwer (2009) <doi:10.1016/j.jmr.2009.09.017>, Džakula (2000) <doi:10.1006/jmre.2000.2123>, Ernst (1969) <doi:10.1016/0022-2364(69)90003-1>, Liland et al. (2010) <doi:10.1366/000370210792434350>).
Authors: Aixiang Jiang [aut, cre, cph]
Maintainer: Aixiang Jiang <[email protected]>
License: MIT + file LICENSE
Version: 1.0.5
Built: 2024-11-12 02:40:20 UTC
Source: https://github.com/ajiangsfu/nmrphasing

Help Index


This is an example data in NMRphasing

Description

This dataset contains sample data for NMRphasing.

Usage

fdat

Format

A data frame with two columns, one is for NMR data in complex format, the other one is ppm

Author(s)

Aixiang Jiang


MPC_AAM

Description

Multiple single linear models that minimize absolute area.

Usage

MPC_AAM(specdat, withBC = TRUE)

Arguments

specdat

A complex number vector of observed frequency domain data.

withBC

A logical parameter that enables/disables baseline correction after baseline correction

Details

This function is used to process phase error correction through multiple single linear models that minimize absolute area, followed by polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

de Brouwer, H. (2009). Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson, 201, 230-238.

Dzakula, Z. (2000). Phase angle measurement from peak areas (PAMPAS). J Magn Reson, 146, 20-32.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
mpc_aam_phased1 <- MPC_AAM(fdat$frequency_domain)

MPC_ADSM

Description

Multiple single linear models that minimize the absolute total dispersion.

Usage

MPC_ADSM(specdat, withBC = TRUE)

Arguments

specdat

A complex number vector of observed frequency domain data.

withBC

A logical parameter that enables/disables baseline correction after baseline correction

Details

This function is used to process phase error correction through multiple single linear models that minimize the absolute total dispersion, followed by polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Jiang, A. (2024). Phase Error Correction in Magnetic Resonance: A Review of Models, Optimization Functions, and Optimizers in Traditional Statistics and Neural Networks. Preprints. https://doi.org/10.20944/preprints202409.2252.v1

Chen, L., Weng, Z., Goh, L., & Garland, M. (2002). An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. Journal of Magnetic Resonance, 158, 1-2.

Ernst, R. R. (1969). Numerical Hilbert transform and automatic phase correction in magnetic resonance spectroscopy. Journal of Magnetic Resonance, 1, 7-26

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
mpc_dsm_phased1 <- MPC_ADSM(fdat$frequency_domain)

MPC_DANM

Description

Multiple linear models that minimize the difference between absolute area and net area.

Usage

MPC_DANM(specdat, withBC = TRUE)

Arguments

specdat

A complex number vector of observed frequency domain data

withBC

A logical parameter that enables/disables baseline correction after baseline correction.

Details

This function processes phase error correction through multiple linear models that minimize the difference between absolute area and net area, followed by polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
mpc_danm_phased1 <- MPC_DANM(fdat$frequency_domain)

MPC_DSM

Description

Multiple single linear models that minimize the total dispersion.

Usage

MPC_DSM(specdat, withBC = TRUE)

Arguments

specdat

A complex number vector of observed frequency domain data.

withBC

A logical parameter that enables/disables baseline correction after baseline correction

Details

This function is used to process phase error correction through multiple single linear models that minimize the total dispersion, followed by polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Binczyk, F., Tarnawski, R., & Polanska, J. (2015). Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomedical Engineering Online, 14 Suppl 2(Suppl 2), S5. https://doi.org/10.1186/1475-925X-14-S2-S5

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
mpc_dsm_phased1 <- MPC_DSM(fdat$frequency_domain)

MPC_EMP

Description

Multiple single linear models based on entropy minimization with negative peak penalty.

Usage

MPC_EMP(specdat, withBC = TRUE)

Arguments

specdat

A complex number vector of observed frequency domain data.

withBC

A logical parameter that enables/disables baseline correction after baseline correction

Details

This function is used to process phase error correction through multiple single linear models with entropy minimization with negative peak penalty, followed by polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Binczyk F, Tarnawski R, Polanska J (2015) Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomed Eng Online 14 Suppl 2:S5.

de Brouwer, H. (2009). Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson, 201, 230-238.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
mpc_emp_phased1 <- MPC_EMP(fdat$frequency_domain)

NLS

Description

Non-linear shrinkage

Usage

NLS(specdat, withBC = TRUE)

Arguments

specdat

A complex number vector of observed frequency domain data.

withBC

A logical parameter that enables/disables baseline correction after baseline correction

Details

This function is used to process phase error correction through non-linear shrinkage, followed by Polynomial baseline correction when necessary.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
nls_phased1 <- NLS(fdat$frequency_domain)

NMRphasing

Description

Phase error correction wrap up function

Usage

NMRphasing(
  specDatIn,
  absorptionOnly = FALSE,
  method = c("NLS", "MPC_DANM", "MPC_EMP", "MPC_AAM", "MPC_DSM", "MPC_ADSM", "SPC_DANM",
    "SPC_EMP", "SPC_AAM", "SPC_DSM", "SPC_ADSM"),
  withBC = TRUE
)

Arguments

specDatIn

Input spectrum data, which can be one of the four formats: a vector of absorption spectrum; a complex vector; a data matrix or a data frame with two columns of spectrum data, which 1st column is for absorption spectrum, and 2nd column is for dispersion spectrum

absorptionOnly

A logical variable to tell us if specDatIn is a a vector of absorption specrtrum, default is false

method

One of phase correction and baseline correction methods. There are eleven available choices, which are "NLS", "MPC_DAOM", "MPC_EMP", "MPC_AAM", "MPC_DSM", "MPC_ADSM", "SPC_DAOM", "SPC_EMP", "SPC_AAM", "SPC_DSM", "SPC_ADSM", with "NLS", non-linear shrinkage as default.

withBC

A logical parameter that enables/disables baseline correction after baseline correction

Details

This is a wrap function to process phase error correction and baseline correction with eleven different choices.

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Jiang, A. (2024). Phase Error Correction in Magnetic Resonance: A Review of Models, Optimization Functions, and Optimizers in Traditional Statistics and Neural Networks. Preprints. https://doi.org/10.20944/preprints202409.2252.v1

Binczyk F, Tarnawski R, Polanska J (2015) Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomed Eng Online 14 Suppl 2:S5.

Chen L, Weng Z, Goh L, Garland M (2002) An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. J Magn Reson 158:164–168.

de Brouwer H (2009) Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson 201:230–238.

Džakula Ž (2000) Phase Angle Measurement from Peak Areas (PAMPAS). J Magn Reson 146:20–32.

Ernst RR (1969) Numerical Hilbert transform and automatic phase correction in magnetic resonance spectroscopy. J Magn Reson 1969 1:7–26.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
nls_phased <- NMRphasing(specDatIn = fdat$frequency_domain, method = "NLS")

SPC_AAM

Description

A single linear model with minimization on absolute area.

Usage

SPC_AAM(specdat, withBC = TRUE)

Arguments

specdat

A complex number vector of observed frequency domain data

withBC

A logical parameter that enables/disables baseline correction after baseline correction

Details

This function is to process phase error correction through a single linear model with minimization on absolute area, followed by polynomial baseline correction if necessary

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

de Brouwer, H. (2009). Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson, 201, 230-238.

Dzakula, Z. (2000). Phase angle measurement from peak areas (PAMPAS). J Magn Reson, 146, 20-32.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
spc_aam_phased1 <- SPC_AAM(fdat$frequency_domain)

SPC_DSM

Description

A single linear model with absolute dispersion summation minimization.

Usage

SPC_ADSM(specdat, withBC = TRUE)

Arguments

specdat

A complex number vector of observed frequency domain data

withBC

A logical parameter that enables/disables baseline correction after baseline correction

Details

This function is to process phase error correction through a single linear model with absolute dispersion summation minimization, followed by polynomial baseline correction if necessary

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Jiang, A. (2024). Phase Error Correction in Magnetic Resonance: A Review of Models, Optimization Functions, and Optimizers in Traditional Statistics and Neural Networks. Preprints. https://doi.org/10.20944/preprints202409.2252.v1

Chen, L., Weng, Z., Goh, L., & Garland, M. (2002). An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. Journal of Magnetic Resonance, 158, 1-2.

Ernst, R. R. (1969). Numerical Hilbert transform and automatic phase correction in magnetic resonance spectroscopy. Journal of Magnetic Resonance, 1, 7-26 Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
spc_dsm_phased1 <- SPC_ADSM(fdat$frequency_domain)

SPC_DANM

Description

A single linear model with Minimization of difference between absolute area and net area

Usage

SPC_DANM(specdat, withBC = TRUE)

Arguments

specdat

A complex number vector of observed frequency domain data

withBC

A logical parameter that enables/disables baseline correction after baseline correction

Details

This function is to process phase error correction through a single linear model with minimization of difference between absolute area and net area, followed by polynomial baseline correction if necessary

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
spc_danm_phased1 <- SPC_DANM(fdat$frequency_domain)

SPC_DSM

Description

A single linear model with dispersion summation minimization.

Usage

SPC_DSM(specdat, withBC = TRUE)

Arguments

specdat

A complex number vector of observed frequency domain data

withBC

A logical parameter that enables/disables baseline correction after baseline correction

Details

This function is to process phase error correction through a single linear model with dispersion summation minimization, followed by polynomial baseline correction if necessary

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Binczyk, F., Tarnawski, R., & Polanska, J. (2015). Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomedical Engineering Online, 14 Suppl 2(Suppl 2), S5. https://doi.org/10.1186/1475-925X-14-S2-S5

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
spc_dsm_phased1 <- SPC_DSM(fdat$frequency_domain)

SPC_EMP

Description

A single linear model with entropy minimization with negative peak penalty

Usage

SPC_EMP(specdat, withBC = TRUE)

Arguments

specdat

A complex number vector of observed frequency domain data

withBC

A logical parameter that enables/disables baseline correction after baseline correction

Details

This function is to process phase error correction through a single linear model with entropy minimization with negative peak penalty, followed by polynomial baseline correction if necessary

Value

A numeric vector of phase corrected absorption spectrum

Author(s)

Aixiang Jiang

References

Binczyk F, Tarnawski R, Polanska J (2015) Strategies for optimizing the phase correction algorithms in Nuclear Magnetic Resonance spectroscopy. Biomed Eng Online 14 Suppl 2:S5.

de Brouwer, H. (2009). Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson, 201, 230-238.

Liland KH, Almøy T, Mevik B (2010), Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra, Applied Spectroscopy 64, pp. 1007-1016.

Examples

data("fdat")
mpc_emp_phased1 <- SPC_EMP(fdat$frequency_domain)